Placeholder Content Image

Airlines cancel flights after volcanic eruptions. An aviation expert explains why that’s a good thing

<p><em><a href="https://theconversation.com/profiles/patrick-murray-2027113">Patrick Murray</a>, <a href="https://theconversation.com/institutions/university-of-southern-queensland-1069">University of Southern Queensland</a></em></p> <p>At least three airlines <a href="https://www.abc.net.au/news/2024-11-13/flights-to-and-from-bali-cancelled-due-to-volcanic-ash/104593698">cancelled flights between Australia and Bali</a> this week after a volcano eruption in eastern Indonesia spewed a vast plume of volcanic ash into the air.</p> <p>But while would-be holiday makers are naturally <a href="https://7news.com.au/sunrise/volcanic-eruption-in-indonesia-forces-airlines-to-cancel-flights-to-bali-stranding-frustrated-passengers-c-16732486">upset</a> at having their plans disrupted, it’s worth remembering it’s not safe to fly planes through volcanic ash.</p> <p>So, how do airlines decide it’s not safe to fly when a volcano erupts? And why is volcanic ash so dangerous for aircraft, anyway?</p> <h2>What does volcanic ash do to a plane?</h2> <p>Volcanic ash particles are very, very abrasive. They can cause permanent damage to windscreens in the aircraft and can even make windscreens look opaque – like someone has gone over them with sandpaper.</p> <p>Imagine getting spectacles and scraping them over and over with sandpaper – that’s what you’d see if you were sitting in the cockpit.</p> <p>Volcanic ash can also clog or damage external sensors, leading to erroneous readings, and can infiltrate an aircraft’s ventilation system. This can affect cabin air quality and lead to potential respiratory issues.</p> <p>But the main issue, in fact, is the impact volcanic ash has on engines.</p> <p>A jet engine works by drawing in air, compressing it, mixing it with fuel and igniting it. This creates high-pressure exhaust gases that are expelled backward, which pushes the engine (and the aircraft) forward.</p> <p>The correct balance of fuel and airflow is crucial. When you disrupt airflow, it can cause the engine to stall.</p> <p>Ash particles that get inside the engines will melt and build up, causing disruption of the airflow. This could cause the engine to “flame out” or stall.</p> <p>Volcanic ash has a lot of silica in it, so when it melts it turns into something similar to glass. It won’t melt unless exposed to very high temperatures – but inside a jet engine, you do get very high temperatures.</p> <p>There was a famous incident in 1982 where a <a href="https://theaviationgeekclub.com/the-story-of-british-airways-flight-9-the-boeing-747-that-lost-all-four-engines-due-to-volcanic-ash-yet-it-landed-safely/">British Airways Boeing 747 plane</a> was flying in the vicinity of Indonesia and lost all four engines after it encountered volcanic ash spewing from Java’s Mount Galunggung.</p> <p>Fortunately, the pilot was able to <a href="https://simpleflying.com/gallunggung-glider-the-story-of-british-airways-flight-9/">restart the engines and land safely</a>, although the pilots were unable to see through the front windscreens.</p> <h2>How do airlines decide it’s not safe to fly when a volcano erupts?</h2> <p>The decision is made by each airline’s operational staff. Each airline’s operational team would be looking at the situation in real time today and making the decision based on their risk assessment.</p> <p>Every airline has a process of risk management, which is required by Australia’s Civil Aviation Safety Authority.</p> <p>Different airlines may tackle risk management in slightly different ways; you might have some cancelling flights earlier than others. But, in broad terms, the more sophisticated airlines would come to similar conclusions and they are likely all communicating with each other.</p> <p>Mostly, they make the call based on the extent of the plume – how big the cloud of ash is and where it’s going, bearing in mind that winds vary with altitude. As you get stronger winds with altitude, the ash can drift quite far from the source.</p> <p>There is also a United Nations agency called the <a href="https://www.icao.int/Pages/default.aspx">International Civil Aviation Organization</a>, which issues guidance on volcanic ash hazards. Various meteorological agencies around the world work together and liaise with aviation authorities to spread the word quickly if there is an eruption.</p> <p>For airlines to resume flights, the ash needs to clear and there needs to be a low probability of further eruptions.</p> <h2>Passenger safety is the priority</h2> <p>The underpinning reason behind these flight cancellations is safety. If you lose engines and you can’t see out the window, the risk to passenger safety is obvious.</p> <p>Naturally, people are upset about their holiday plans being held up. But it’s actually in passengers’ best interests to not fly through volcanic ash.<img style="border: none !important; box-shadow: none !important; margin: 0 !important; max-height: 1px !important; max-width: 1px !important; min-height: 1px !important; min-width: 1px !important; opacity: 0 !important; outline: none !important; padding: 0 !important;" src="https://counter.theconversation.com/content/243576/count.gif?distributor=republish-lightbox-basic" alt="The Conversation" width="1" height="1" /></p> <p><em><a href="https://theconversation.com/profiles/patrick-murray-2027113">Patrick Murray</a>, Emeritus Professor of Aviation, <a href="https://theconversation.com/institutions/university-of-southern-queensland-1069">University of Southern Queensland</a></em></p> <p><em>Image credits: Shutterstock</em></p> <p><em>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a href="https://theconversation.com/airlines-cancel-flights-after-volcanic-eruptions-an-aviation-expert-explains-why-thats-a-good-thing-243576">original article</a>.</em></p>

Travel Trouble

Placeholder Content Image

Airline bans couple after racist row over reclined seat

<p>Two travellers have been banned from Cathay Pacific flights after an argument over seat etiquette descended into racist insults. </p> <p>The incident occurred on a flight from Hong Kong to London, with a woman documenting her experience in a video posted on Xiaohongshu, China's version of Instagram.</p> <p>The woman, from mainland China, explained, "The lady sitting behind me asked me to put my seat up because it was blocking her husband's view of the TV. I politely declined, and she started stretching her feet onto my armrest, kicking my arm and cursing at me like crazy."</p> <p>A flight attendant stepped in to find a solution to the issue, but when the woman continued to refuse to put her chair up, the situation only escalated. </p> <p>"When (the female passenger) realised my Cantonese wasn't so great, she started throwing around some nasty comments, calling me a 'Mainland girl' and other derogatory stuff," the woman said, explaining how people from Hong Kong speak mainly Cantonese, whereas mainland Chinese mainly speak Mandarin.</p> <p>"Once I started recording, the husband behind me even shoved his hand on my armrest and started shaking it like crazy. I felt my personal space had been completely violated," added the woman, who said other passengers then intervened.</p> <p>In footage of the incident uploaded by the woman, a female voice can be heard saying in Mandarin: "You're old enough — why are you bullying a young girl?"</p> <p>And others can be heard shouting in Cantonese: "You're embarrassing us Hongkongers!"</p> <p>"After some passengers spoke up for me, the flight attendant finally said I could switch seats. I felt it was absurd—what if no one had backed me up? Would I have just been left to deal with it on my own?" the passenger said.</p> <p>"As a major airline, isn't Cathay supposed to know how to handle such disputes? Shouldn't treating passengers differently get some consequences?</p> <p>In a statement released Saturday, Cathay Pacific said it wanted to "sincerely apologise" for the "unpleasant experience," with the airline saying, "We maintain a zero-tolerance policy for any behaviour that violates aviation safety regulations or disrespects the rights of other customers."</p> <p>"We will deny future travel on any Cathay Group flights to the two customers involved in this incident."</p> <p><em>Image credits: Shutterstock </em></p>

Travel Trouble

Placeholder Content Image

Passenger sparks debate over travellers sleeping in aisle seats

<p>A heated debate has erupted online after a passenger suggested those sitting in an aisle seat should remain alert and awake for the entire flight, with the only exception being if it's a long-flight of seven hours or more. </p> <p>“A person sitting in an aisle seat on a plane should not be allowed to sleep," they wrote on Reddit. </p> <p>The reason behind it, according to the passenger, is to ensure that middle and window seat passengers can access the toilet, get served by flight attendants, and evacuate quickly in an emergency. </p> <p>“There are some exceptions and those would probably be on any flight longer than seven hours.</p> <p>“But anything shorter than that, you should not be sleeping. What if the middle or window passenger needs the bathroom, or if the flight attendant needs to hand them something – You’ll be in the way.”</p> <p>They added that a snoozing aisle seat passenger could potentially slow down evacuation during an emergency and put everyone at risk. </p> <p>“Now you would be risking people’s lives because you fell asleep,” they wrote.</p> <p>Social media users flocked to the Reddit thread to share their thoughts. </p> <p> “Nah, just poke me and wake me up if you need me to get up or do something," one wrote. </p> <p>“I’m well aware that I’m in the way, believe me. I’m certainly not there because I wanted to be in the aisle seat.”</p> <p>“If you sleep in an aisle seat, you deal with people getting up. That’s the unwritten rule," another added. </p> <p>A few others supported the idea, but shared their own take on plane etiquette. </p> <p> “My take on this: if you sleep in the aisle seat, you must be okay with being woken up multiple times to let the folks in your row get up.</p> <p>“Other flight rules: middle seat gets the armrest, and window seat must raise the window shade during taxi, takeoff, and landing so the rest of us in the row can watch.”</p> <p><em>Image: Shutterstock</em></p>

Travel Tips

Placeholder Content Image

Woman “bullied” on plane over budget seating trick

<p dir="ltr">A young woman has recalled a flight from hell when she was “bullied” by a couple who were trying to utilise a seating hack that went viral on TikTok. </p> <p dir="ltr">The solo traveller took to Reddit to recount the story and ask social media users if she was in the wrong for her action. </p> <p dir="ltr">The woman began by saying she usually pays more to select her plane seat ahead of time, but a medical emergency on another plane had her waiting on standby and left with no option other than to sit in a middle seat.</p> <p dir="ltr">When she was finally able to board, she was greeted by a couple who had purchased both the window and aisle seats in a bid to have more space, utilising a travel “trick” that has been popular on TikTok.</p> <p dir="ltr">The method, which has been dubbed the 'poor man's business class', usually leaves travellers with an empty middle seat and more space, and few travellers opt to pick a middle seat. </p> <p dir="ltr">“When I got to my row the man and woman were chatting and sharing a snack... it was obvious they were together. I mentioned to the man that I'm in the middle, and he got up to let me in,” the unsuspecting traveller wrote on Reddit.  </p> <p dir="ltr">“I asked them if they would prefer to sit together, I said I was totally okay with that. The woman reacted rudely to this and said ‘you're not supposed to be sitting here anyway’.”</p> <p dir="ltr">After noticing how the plane was full, she offered to show the pair her new ticket with the correct seat number on it.</p> <p dir="ltr">“She flicked her hand at my ticket and made a disgusted sound. I offered again if they wanted to sit together to which she didn't reply, her partner said it's okay and... made some small talk,” she continued. </p> <p dir="ltr">The man’s girlfriend then interrupted their conversation to ask,”'Did you use one of those third party websites to book your flight? It's so frustrating when people cheap out to inconvenience others.”</p> <p dir="ltr">The American woman explained that she had booked her flight directly and she had been placed on standby like everyone else and didn't choose the middle seat - she was assigned it.</p> <p dir="ltr">She then tried to keep the peace by refusing to engage with the furious woman.  </p> <p dir="ltr">“I was so done with her attitude, I put my headphones on and attempted to do my own thing,” she explained.</p> <p dir="ltr">But the “entitled” girlfriend wasn't letting it go, as the woman explained, “This woman kept reaching over me and tapping her partner and trying to talk to him in a way that was super intrusive.”</p> <p dir="ltr">“I could tell even her partner was trying to engage her less so that she would hopefully stop, but she didn't.”</p> <p dir="ltr">“I think they tried to pull that tactic where they don't sit together on purpose...hoping no one will sit between them. But on full flights it doesn't work. And even so - it's not the other person's fault.”</p> <p dir="ltr">The traveller's post was met with hundreds of comments slamming the girlfriend’s behaviour, as one person wrote, “It's like a toddler having a tantrum.”</p> <p dir="ltr">“She was disappointed and a total a**hole. Gross entitled people,” another added. </p> <p dir="ltr">Another person applauded the traveller’s level-headed behaviour, writing, “Wow! You are my hero for keeping it classy - I’m afraid I would not have been as kind as you.”</p> <p dir="ltr"><em>Image credits: Shutterstock </em></p>

Travel Trouble

Placeholder Content Image

How do airplanes fly? An aerospace engineer explains the physics of flight

<div class="theconversation-article-body"><em><a href="https://theconversation.com/profiles/craig-merrett-1509278">Craig Merrett</a>, <a href="https://theconversation.com/institutions/clarkson-university-4276">Clarkson University</a></em></p> <p>Airplane flight is one of the most significant technological achievements of the 20th century. The <a href="https://airandspace.si.edu/explore/stories/wright-brothers">invention of the airplane</a> allows people to travel from one side of the planet to the other in less than a day, compared with weeks of travel by boat and train.</p> <p>Understanding precisely why airplanes fly is an ongoing challenge for <a href="https://www.clarkson.edu/people/craig-merrett">aerospace engineers, like me</a>, who study and design airplanes, rockets, satellites, helicopters and space capsules.</p> <p>Our job is to make sure that flying through the air or in space is safe and reliable, by using tools and ideas from science and mathematics, like computer simulations and experiments.</p> <p>Because of that work, flying in an airplane is <a href="https://usafacts.org/articles/is-flying-safer-than-driving/">the safest way to travel</a> – safer than cars, buses, trains or boats. But although aerospace engineers design aircraft that are stunningly sophisticated, you might be surprised to learn there are still some details about the physics of flight that we don’t fully understand.</p> <figure class="align-center zoomable"><a href="https://images.theconversation.com/files/577439/original/file-20240222-28-v3tjb4.jpg?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=1000&amp;fit=clip"><img src="https://images.theconversation.com/files/577439/original/file-20240222-28-v3tjb4.jpg?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;fit=clip" sizes="(min-width: 1466px) 754px, (max-width: 599px) 100vw, (min-width: 600px) 600px, 237px" srcset="https://images.theconversation.com/files/577439/original/file-20240222-28-v3tjb4.jpg?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=600&amp;h=381&amp;fit=crop&amp;dpr=1 600w, https://images.theconversation.com/files/577439/original/file-20240222-28-v3tjb4.jpg?ixlib=rb-4.1.0&amp;q=30&amp;auto=format&amp;w=600&amp;h=381&amp;fit=crop&amp;dpr=2 1200w, https://images.theconversation.com/files/577439/original/file-20240222-28-v3tjb4.jpg?ixlib=rb-4.1.0&amp;q=15&amp;auto=format&amp;w=600&amp;h=381&amp;fit=crop&amp;dpr=3 1800w, https://images.theconversation.com/files/577439/original/file-20240222-28-v3tjb4.jpg?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;h=479&amp;fit=crop&amp;dpr=1 754w, https://images.theconversation.com/files/577439/original/file-20240222-28-v3tjb4.jpg?ixlib=rb-4.1.0&amp;q=30&amp;auto=format&amp;w=754&amp;h=479&amp;fit=crop&amp;dpr=2 1508w, https://images.theconversation.com/files/577439/original/file-20240222-28-v3tjb4.jpg?ixlib=rb-4.1.0&amp;q=15&amp;auto=format&amp;w=754&amp;h=479&amp;fit=crop&amp;dpr=3 2262w" alt="A diagram of an airplane that shows the four forces of flight." /></a><figcaption><span class="caption">The forces of weight, thrust, drag and lift act on a plane to keep it aloft and moving.</span> <span class="attribution"><a class="source" href="https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/airplane-cruise-balanced-forces/">NASA</a></span></figcaption></figure> <h2>May the force(s) be with you</h2> <p>There are <a href="https://www.nasa.gov/stem-content/four-forces-of-flight/#:%7E">four forces</a> that aerospace engineers consider when designing an airplane: weight, thrust, drag and lift. Engineers use these forces to help design the shape of the airplane, the size of the wings, and figure out how many passengers the airplane can carry.</p> <p>For example, when an airplane takes off, the thrust must be greater than the drag, and the lift must be greater than the weight. If you watch an airplane take off, you’ll see the wings change shape using flaps from the back of the wings. The flaps help make more lift, but they also make more drag, so a powerful engine is necessary to create more thrust.</p> <p>When the airplane is high enough and is cruising to your destination, lift needs to balance the weight, and the thrust needs to balance the drag. So the pilot pulls the flaps in and can set the engine to produce less power.</p> <p>That said, let’s define what force means. According to <a href="https://ca.pbslearningmedia.org/resource/4079abf0-7a4b-4f49-80ad-c69cd06a80f9/newtons-second-law-of-motion/">Newton’s Second Law</a>, a force is a mass multiplied by an acceleration, or F = ma.</p> <p>A force that everyone encounters every day is <a href="https://spaceplace.nasa.gov/what-is-gravity/en/#:%7E">the force of gravity</a>, which keeps us on the ground. When you get weighed at the doctor’s office, they’re actually measuring the amount of force that your body applies to the scale. When your weight is given in pounds, that is a measure of force.</p> <p>While an airplane is flying, gravity is pulling the airplane down. That force is the weight of the airplane.</p> <p>But its engines push the airplane forward because they create <a href="https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/what-is-thrust/">a force called thrust</a>. The engines pull in air, which has mass, and quickly push that air out of the back of the engine – so there’s a mass multiplied by an acceleration.</p> <p>According to <a href="https://www.youtube.com/watch?v=a-wh3fJRdjo">Newton’s Third Law</a>, for every action there’s an equal and opposite reaction. When the air rushes out the back of the engines, there is a reaction force that pushes the airplane forward – that’s called thrust.</p> <p>As the airplane flies through the air, the shape of the airplane pushes air out of the way. Again, by Newton’s Third Law, this air pushes back, <a href="https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/what-is-drag/#:%7E">which leads to drag</a>.</p> <p>You can experience something similar to drag when swimming. Paddle through a pool, and your arms and feet provide thrust. Stop paddling, and you will keep moving forward because you have mass, but you will slow down. The reason that you slow down is that the water is pushing back on you – that’s drag.</p> <h2>Understanding lift</h2> <p><a href="https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/what-is-lift/">Lift</a> is more complicated than the other forces of weight, thrust and drag. It’s created by the wings of an airplane, and the shape of the wing is critical; that shape is <a href="https://howthingsfly.si.edu/media/airfoil#:%7E">known as an airfoil</a>. Basically it means the top and bottom of the wing are curved, although the shapes of the curves can be different from each other.</p> <p>As air flows around the airfoil, <a href="https://www.youtube.com/watch?v=UO75jDwGCdQ">it creates pressure</a> – a force spread out over a large area. Lower pressure is created on the top of the airfoil compared to the pressure on the bottom. Or to look at it another way, air travels faster over the top of the airfoil than beneath.</p> <p>Understanding why the pressure and speeds are different on the top and the bottom is <a href="https://airandspace.si.edu/multimedia-gallery/lift-and-copjpg">critical to understand lift</a>. By improving our understanding of lift, engineers can design more fuel-efficient airplanes and give passengers more comfortable flights.</p> <figure class="align-center zoomable"><a href="https://images.theconversation.com/files/579698/original/file-20240304-24-6df49v.jpg?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=1000&amp;fit=clip"><img src="https://images.theconversation.com/files/579698/original/file-20240304-24-6df49v.jpg?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;fit=clip" sizes="(min-width: 1466px) 754px, (max-width: 599px) 100vw, (min-width: 600px) 600px, 237px" srcset="https://images.theconversation.com/files/579698/original/file-20240304-24-6df49v.jpg?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=600&amp;h=385&amp;fit=crop&amp;dpr=1 600w, https://images.theconversation.com/files/579698/original/file-20240304-24-6df49v.jpg?ixlib=rb-4.1.0&amp;q=30&amp;auto=format&amp;w=600&amp;h=385&amp;fit=crop&amp;dpr=2 1200w, https://images.theconversation.com/files/579698/original/file-20240304-24-6df49v.jpg?ixlib=rb-4.1.0&amp;q=15&amp;auto=format&amp;w=600&amp;h=385&amp;fit=crop&amp;dpr=3 1800w, https://images.theconversation.com/files/579698/original/file-20240304-24-6df49v.jpg?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;h=484&amp;fit=crop&amp;dpr=1 754w, https://images.theconversation.com/files/579698/original/file-20240304-24-6df49v.jpg?ixlib=rb-4.1.0&amp;q=30&amp;auto=format&amp;w=754&amp;h=484&amp;fit=crop&amp;dpr=2 1508w, https://images.theconversation.com/files/579698/original/file-20240304-24-6df49v.jpg?ixlib=rb-4.1.0&amp;q=15&amp;auto=format&amp;w=754&amp;h=484&amp;fit=crop&amp;dpr=3 2262w" alt="A diagram that shows how the airfoil of a plane works." /></a><figcaption><span class="caption">Note the airfoil, which is a specific wing shape that helps keep a plane in the air.</span> <span class="attribution"><a class="source" href="https://www.gettyimages.com/detail/illustration/how-airplanes-fly-royalty-free-illustration/1401215523?phrase=airfoil+diagram&amp;adppopup=true">Dimitrios Karamitros/iStock via Getty Images Plus</a></span></figcaption></figure> <h2>The conundrum</h2> <p>The reason why air moves at different speeds around an airfoil remains mysterious, and <a href="https://www.scientificamerican.com/video/no-one-can-explain-why-planes-stay-in-the-air/">scientists are still investigating</a> this question.</p> <p>Aerospace engineers have measured these pressures on a wing in both wind tunnel experiments and during flight. We can create models of different wings to predict if they will fly well. We can also change lift by changing a wing’s shape to create airplanes that fly for long distances or fly very fast.</p> <p>Even though we still don’t fully know why lift happens, aerospace engineers work with mathematical equations that recreate the different speeds on the top and bottom of the airfoil. Those equations describe a process <a href="https://howthingsfly.si.edu/media/circulation-theory-lift">known as circulation</a>.</p> <p>Circulation provides aerospace engineers with a way to model what happens around a wing even if we do not completely understand why it happens. In other words, through the use of math and science, we are able to build airplanes that are safe and efficient, even if we don’t completely understand the process behind why it works.</p> <p>Ultimately, if aerospace engineers can figure out why the air flows at different speeds depending on which side of the wing it’s on, we can design airplanes that use less fuel and pollute less.</p> <p><!-- End of code. If you don't see any code above, please get new code from the Advanced tab after you click the republish button. The page counter does not collect any personal data. More info: https://theconversation.com/republishing-guidelines --></p> <p><a href="https://theconversation.com/profiles/craig-merrett-1509278"><em>Craig Merrett</em></a><em>, Professor of Mechanical and Aerospace Engineering, <a href="https://theconversation.com/institutions/clarkson-university-4276">Clarkson University</a></em></p> <p><em>Image credits: Shutterstock</em></p> <p><em>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a href="https://theconversation.com/how-do-airplanes-fly-an-aerospace-engineer-explains-the-physics-of-flight-222847">original article</a>.</em></p> </div>

Travel Tips

Placeholder Content Image

The one in-flight activity to avoid to conquer jet lag

<p dir="ltr">While many people love to travel and explore new destinations, there’s no doubt that the worst part of a holiday is often the long-haul flight. </p> <p dir="ltr">With many holidays, especially ones overseas, a drastic change of timezones can mean jet lag is unavoidable, but there are a few things you can do to make life easy when you land. </p> <p dir="ltr">According to one travel expert, how you feel when you disembark often boils down to your in-flight activities. </p> <p dir="ltr">Sarah Built, who has worked up a lifetime of long-haul travel as the Etihad Airways Vice President of Sales for Australasia, told <em><a href="https://travel.nine.com.au/latest/flight-tips-how-to-avoid-jet-lag/db8fbda1-2318-44c0-b9fe-e14d11dec70c">9Travel</a></em> that there is one thing she always avoids onboard in order to land at her destination feeling fresh: alcohol. </p> <p dir="ltr">"Whilst the allure of coffee, cocktails and snacks is real (particularly if you're travelling with kids), they can actually contribute to dehydration and worsen jet lag," she says.</p> <p dir="ltr">Instead of that in-flight beer glass of wine, Sarah says to drink water (with lime added for a twist) or herbal tea to boost your hydration and lessen that groggy mid-flight feeling.</p> <p dir="ltr">Drinking water is obviously also the key to staying hydrated, as Sarah says it's important to start drinking extra water the day before your flight, so you're going in prepared.</p> <p dir="ltr">"I carry a reusable water bottle to keep fluids up during the journey (most airports will have water stations for you to refill easily)," she says, which means you won't need to pay for an overpriced bottle at the airport.</p> <p dir="ltr">"Dehydration can cause headaches and fatigue, and you want to be able to hit the ground running on arrival, so always remember to drink plenty of water," she advises.</p> <p dir="ltr"><em>Image credits: Shutterstock </em></p>

Travel Tips

Placeholder Content Image

Are some routes more prone to air turbulence? Will climate change make it worse? Your questions answered

<div class="theconversation-article-body"><em><a href="https://theconversation.com/profiles/doug-drury-1277871">Doug Drury</a>, <a href="https://theconversation.com/institutions/cquniversity-australia-2140">CQUniversity Australia</a></em></p> <p>A little bit of turbulence is a common experience for air travellers. Severe incidents are rare – but when they occur they can be deadly.</p> <p>The recent Singapore Airlines flight SQ321 from London to Singapore shows the danger. An <a href="https://apnews.com/article/singapore-airlines-flight-turbulence-5a9a268e1a6a6fb9ece7e58b5ea9231b">encounter with extreme turbulence</a> during normal flight left one person dead from a presumed heart attack and several others badly injured. The flight diverted to land in Bangkok so the severely injured passengers could receive hospital treatment.</p> <p>Air turbulence can happen anywhere, but is far more common on some routes than on others.</p> <p>Climate change is expected to boost the chances of air turbulence, and make it more intense. In fact, <a href="https://www.nature.com/articles/s41586-019-1465-z">some research</a> indicates turbulence <a href="https://theconversation.com/aviation-turbulence-soared-by-up-to-55-as-the-world-warmed-new-research-207574">has already worsened</a> over the past few decades.</p> <h2>Where does turbulence happen?</h2> <p>Nearly every flight experiences turbulence in one form or another.</p> <p>If an aircraft is taking off or landing behind another aircraft, the wind generated by the engine and <a href="https://www.faa.gov/air_traffic/publications/atpubs/aim_html/chap7_section_4.html">wingtips</a> of the lead aircraft can cause “wake turbulence” for the one behind.</p> <p>Close to ground level, there may be turbulence due to strong winds associated with weather patterns moving through the area near an airport. At higher altitudes, there may be wake turbulence again (if flying close to another aircraft), or turbulence due to updraughts or downdraughts from a thunderstorm.</p> <p>Another kind of turbulence that occurs at higher altitudes is harder to predict or avoid. So-called “<a href="https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023gl103814">clear-air turbulence</a>” is invisible, as the name suggests. It is often caused by warmer air rising into cooler air, and is generally expected to get worse due to climate change.</p> <p>At the most basic level turbulence is the result of two or more wind events colliding and creating eddies, or swirls of <a href="https://www.nationalgeographic.com/travel/article/what-is-turbulence-explained">disrupted airflow</a>.</p> <p>It often occurs near mountain ranges, as wind flowing over the terrain accelerates upward.</p> <p>Turbulence also often occurs at the edges of the <a href="https://www.nationalgeographic.com/travel/article/what-is-turbulence-explained">jet streams</a>. These are narrow bands of strong, high-altitude winds circling the globe. Aircraft often travel in the jet streams to get a speed boost – but when entering or leaving the jet stream, there may be some turbulence as it crosses the boundary with the slower winds outside.</p> <h2>What are the most turbulent routes?</h2> <p>It is possible to <a href="https://turbli.com/maps/world-turbulence-map/">map turbulence patterns</a> over the whole world. Airlines use these maps to plan in advance for alternate airports or other essential contingencies.</p> <figure class="align-center zoomable"><a href="https://images.theconversation.com/files/595676/original/file-20240522-21-ippmyt.png?ixlib=rb-4.1.0&q=45&auto=format&w=1000&fit=clip"><img src="https://images.theconversation.com/files/595676/original/file-20240522-21-ippmyt.png?ixlib=rb-4.1.0&q=45&auto=format&w=754&fit=clip" sizes="(min-width: 1466px) 754px, (max-width: 599px) 100vw, (min-width: 600px) 600px, 237px" srcset="https://images.theconversation.com/files/595676/original/file-20240522-21-ippmyt.png?ixlib=rb-4.1.0&q=45&auto=format&w=600&h=430&fit=crop&dpr=1 600w, https://images.theconversation.com/files/595676/original/file-20240522-21-ippmyt.png?ixlib=rb-4.1.0&q=30&auto=format&w=600&h=430&fit=crop&dpr=2 1200w, https://images.theconversation.com/files/595676/original/file-20240522-21-ippmyt.png?ixlib=rb-4.1.0&q=15&auto=format&w=600&h=430&fit=crop&dpr=3 1800w, https://images.theconversation.com/files/595676/original/file-20240522-21-ippmyt.png?ixlib=rb-4.1.0&q=45&auto=format&w=754&h=541&fit=crop&dpr=1 754w, https://images.theconversation.com/files/595676/original/file-20240522-21-ippmyt.png?ixlib=rb-4.1.0&q=30&auto=format&w=754&h=541&fit=crop&dpr=2 1508w, https://images.theconversation.com/files/595676/original/file-20240522-21-ippmyt.png?ixlib=rb-4.1.0&q=15&auto=format&w=754&h=541&fit=crop&dpr=3 2262w" alt="Map showing air turbulence." /></a><figcaption><span class="caption">A map of estimated clear-air turbulence around the world, current as of 3:00PM AEST (0500 UTC) on May 22 2024.</span> <span class="attribution"><a class="source" href="https://turbli.com/maps/world-turbulence-map/">Turbli</a></span></figcaption></figure> <p>While turbulence changes with weather conditions, some regions and routes are more prone to it than others. As you can see from the list below, the majority of the most turbulent routes travel close to mountains.</p> <p><iframe id="EktuH" class="tc-infographic-datawrapper" style="border: none;" src="https://datawrapper.dwcdn.net/EktuH/2/" width="100%" height="400px" frameborder="0"></iframe></p> <p>In Australia, the <a href="https://turbli.com/historical-data/most-turbulent-flight-routes-of-2023/">highest average turbulence in 2023</a> occurred on the Brisbane to Sydney route, followed by Melbourne to Sydney and Brisbane to Melbourne.</p> <h2>Climate change may increase turbulence</h2> <p>How will climate change affect the future of aviation?</p> <p>A <a href="https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2023GL103814">study published last year</a> found evidence of large increases in clear-air turbulence between 1979 and 2020. In some locations severe turbulence increased by as much as 55%.</p> <figure class="align-center zoomable"><a href="https://images.theconversation.com/files/595683/original/file-20240522-17-p2zdrt.png?ixlib=rb-4.1.0&q=45&auto=format&w=1000&fit=clip"><img src="https://images.theconversation.com/files/595683/original/file-20240522-17-p2zdrt.png?ixlib=rb-4.1.0&q=45&auto=format&w=754&fit=clip" sizes="(min-width: 1466px) 754px, (max-width: 599px) 100vw, (min-width: 600px) 600px, 237px" srcset="https://images.theconversation.com/files/595683/original/file-20240522-17-p2zdrt.png?ixlib=rb-4.1.0&q=45&auto=format&w=600&h=253&fit=crop&dpr=1 600w, https://images.theconversation.com/files/595683/original/file-20240522-17-p2zdrt.png?ixlib=rb-4.1.0&q=30&auto=format&w=600&h=253&fit=crop&dpr=2 1200w, https://images.theconversation.com/files/595683/original/file-20240522-17-p2zdrt.png?ixlib=rb-4.1.0&q=15&auto=format&w=600&h=253&fit=crop&dpr=3 1800w, https://images.theconversation.com/files/595683/original/file-20240522-17-p2zdrt.png?ixlib=rb-4.1.0&q=45&auto=format&w=754&h=318&fit=crop&dpr=1 754w, https://images.theconversation.com/files/595683/original/file-20240522-17-p2zdrt.png?ixlib=rb-4.1.0&q=30&auto=format&w=754&h=318&fit=crop&dpr=2 1508w, https://images.theconversation.com/files/595683/original/file-20240522-17-p2zdrt.png?ixlib=rb-4.1.0&q=15&auto=format&w=754&h=318&fit=crop&dpr=3 2262w" alt="A map of the world with different areas shaded in red." /></a><figcaption><span class="caption">A map showing changes in the chance of clear-air turbulence across the globe between 1979 and 2020. Darker red indicates a higher chance of turbulence.</span> <span class="attribution"><a class="source" href="https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2023GL103814">Prosser et al. (2023), Geophysical Research Letters</a></span></figcaption></figure> <p>In 2017, a <a href="https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2017GL074618">different study used climate modelling</a> to project that clear-air turbulence may be four times as common as it used to be by 2050, under some climate change scenarios.</p> <h2>What can be done about turbulence?</h2> <p>What can be done to mitigate turbulence? <a href="https://safetyfirst.airbus.com/optimum-use-of-weather-radar/">Technology to detect turbulence</a> is still in the research and development phase, so pilots use the knowledge they have from weather radar to determine the best plan to avoid weather patterns with high levels of moisture directly ahead of their flight path.</p> <p>Weather radar imagery shows the pilots where the most intense turbulence can be expected, and they work with air traffic control to avoid those areas. When turbulence is encountered unexpectedly, the pilots immediately turn on the “fasten seatbelt” sign and reduce engine thrust to slow down the plane. They will also be in touch with air traffic control to find better conditions either by climbing or descending to smoother air.</p> <p>Ground-based meteorological centres can see weather patterns developing with the assistance of satellites. They provide this information to flight crews in real time, so the crew knows the weather to expect throughout their flight. This can also include areas of expected turbulence if storms develop along the intended flight route.</p> <p>It seems we are heading into more turbulent times. Airlines will do all they can to reduce the impact on planes and passengers. But for the average traveller, the message is simple: when they tell you to fasten your seatbelt, you should listen.<!-- Below is The Conversation's page counter tag. Please DO NOT REMOVE. --><img style="border: none !important; box-shadow: none !important; margin: 0 !important; max-height: 1px !important; max-width: 1px !important; min-height: 1px !important; min-width: 1px !important; opacity: 0 !important; outline: none !important; padding: 0 !important;" src="https://counter.theconversation.com/content/230666/count.gif?distributor=republish-lightbox-basic" alt="The Conversation" width="1" height="1" /><!-- End of code. If you don't see any code above, please get new code from the Advanced tab after you click the republish button. The page counter does not collect any personal data. More info: https://theconversation.com/republishing-guidelines --></p> <p><a href="https://theconversation.com/profiles/doug-drury-1277871"><em>Doug Drury</em></a><em>, Professor/Head of Aviation, <a href="https://theconversation.com/institutions/cquniversity-australia-2140">CQUniversity Australia</a></em></p> <p><em>Image credits: Shutterstock</em></p> <p><em>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a href="https://theconversation.com/are-some-routes-more-prone-to-air-turbulence-will-climate-change-make-it-worse-your-questions-answered-230666">original article</a>.</em></p> </div>

Travel Trouble

Placeholder Content Image

Air travel exposes you to radiation – how much health risk comes with it?

<p><em><a href="https://theconversation.com/profiles/timothy-j-jorgensen-239253">Timothy J. Jorgensen</a>, <a href="https://theconversation.com/institutions/georgetown-university-1239">Georgetown University</a></em></p> <p>In 2017, <a href="http://www.independent.ie/business/world/18-million-miles-and-counting-the-globes-top-business-traveller-35666790.html">business traveler Tom Stuker</a> was hailed as the world’s most frequent flyer, logging 18,000,000 miles of air travel on United Airlines over 14 years.</p> <p>That’s a lot of time up in the air. If Stuker’s traveling behaviors are typical of other business flyers, he may have eaten 6,500 <a href="http://www.airliners.net/forum/viewtopic.php?t=689041">inflight meals</a>, drunk 5,250 <a href="https://doi.org/10.1111/j.1708-8305.2009.00339.x">alcoholic beverages</a>, watched thousands of <a href="http://www.iata.org/publications/store/Pages/global-passenger-survey.aspx">inflight movies</a> and made around 10,000 visits to <a href="http://blog.thetravelinsider.info/2012/11/how-many-restrooms-are-enough-on-a-plane.html">airplane toilets</a>.</p> <p>He would also have accumulated a radiation dose equivalent to about 1,000 <a href="https://www.radiologyinfo.org/en/info.cfm?pg=safety-xray">chest x-rays</a>. But what kind of health risk does all that radiation actually pose?</p> <h2>Cosmic rays coming at you</h2> <p>You might guess that a frequent flyer’s radiation dose is coming from the airport security checkpoints, with their whole-body scanners and baggage x-ray machines, but you’d be wrong. The <a href="http://www.aapm.org/publicgeneral/AirportScannersPressRelease.asp">radiation doses to passengers from these security procedures</a> are trivial.</p> <p>The major source of radiation exposure from air travel comes from the flight itself. This is because at high altitude the <a href="http://www.altitude.org/why_less_oxygen.php">air gets thinner</a>. The farther you go from the Earth’s surface, the fewer molecules of gas there are per volume of space. Thinner air thus means fewer molecules to deflect incoming <a href="http://www.space.com/32644-cosmic-rays.html">cosmic rays</a> – radiation from outer space. With less <a href="http://www.bbc.co.uk/science/earth/atmosphere_and_climate/atmosphere">atmospheric shielding</a>, there is more exposure to radiation.</p> <p>The most extreme situation is for astronauts who travel entirely outside of the Earth’s atmosphere and enjoy none of its protective shielding. Consequently, they receive high radiation doses. In fact, it is the accumulation of radiation dose that is the limiting factor for the maximum length of manned space flights. Too long in space and <a href="https://www.nasa.gov/hrp/bodyinspace">astronauts risk cataracts, cancer and potential heart ailments</a> when they get back home.</p> <p>Indeed, it’s the radiation dose problem that is a major spoiler for <a href="http://www.space.com/34210-elon-musk-unveils-spacex-mars-colony-ship.html">Elon Musk’s goal of inhabiting Mars</a>. An extended stay on Mars, with its <a href="http://www.space.com/16903-mars-atmosphere-climate-weather.html">extremely thin atmosphere</a>, would be lethal due to the high radiation doses, notwithstanding Matt Damon’s successful Mars colonization in the movie <a href="https://www.youtube.com/watch?v=ej3ioOneTy8">“The Martian</a>.”</p> <h2>Radiation risks of ultra frequent flying</h2> <p>What would be Stuker’s cumulative radiation dose and what are his health risks?</p> <p>It depends entirely on how much time he has spent in the air. Assuming an <a href="http://hypertextbook.com/facts/2002/JobyJosekutty.shtml">average flight speed</a> (550 mph), Stuker’s 18,000,000 miles would translate into 32,727 hours (3.7 years) of flight time. The radiation dose rate at typical <a href="http://www.telegraph.co.uk/travel/travel-truths/why-do-planes-fly-so-high-feet/">commercial airline flight altitude</a> (35,000 feet) is about <a href="https://hps.org/publicinformation/ate/faqs/commercialflights.html">0.003 millisieverts per hour</a>. (As I explain in my book <a href="http://press.princeton.edu/titles/10691.html">“Strange Glow: The Story of Radiation</a>,” a millisievert or mSv is a unit of radiation dose that can be used to estimate cancer risk.) By multiplying the dose rate by the hours of flight time, we can see that Stuker has earned himself about 100 mSv of radiation dose, in addition to a lot of free airline tickets. But what does that mean for his health?</p> <p>The primary health threat at this dose level is an increased risk of some type of cancer later in life. Studies of atomic bomb victims, nuclear workers and medical radiation patients have <a href="https://doi.org/10.17226/11340">allowed scientists to estimate the cancer risk</a> for any particular radiation dose.</p> <p>All else being equal and assuming that low doses have risk levels proportionate to high doses, then an overall cancer risk rate of <a href="http://www.imagewisely.org/imaging-modalities/computed-tomography/medical-physicists/articles/how-to-understand-and-communicate-radiation-risk">0.005 percent per mSv</a> is a reasonable and commonly used estimate. Thus, Stuker’s 100-mSv dose would increase his lifetime risk of contracting a potentially fatal cancer by about 0.5 percent.</p> <h2>Contextualizing the risk</h2> <p>The question then becomes whether that’s a high level of risk. Your own feeling might depend on how you see your background cancer risk.</p> <p>Most people <a href="http://www.who.int/whr/2002/chapter3/en/index4.html">underestimate their personal risk of dying from cancer</a>. Although the exact number is debatable, it’s fair to say that <a href="https://www.cancer.org/cancer/cancer-basics/lifetime-probability-of-developing-or-dying-from-cancer.html">about 25 percent of men ultimately contract a potentially fatal cancer</a>. Stuker’s 0.5 percent cancer risk from radiation should be added to his baseline risk – so it would go from 25 percent to 25.5 percent. A cancer risk increase of that size is too small to actually measure in any scientific way, so it must remain a theoretical increase in risk.</p> <p>A 0.5 percent increase in risk is the same as one chance in 200 of getting cancer. In other words, if 200 male travelers logged 18,000,000 miles of air travel, like Stuker did, we might expect just one of them to contract a cancer thanks to his flight time. The other 199 travelers would suffer no health effects. So the chances that Stuker is the specific 18-million-mile traveler who would be so unlucky is quite small.</p> <p>Stuker was logging more air hours per year (greater than 2,000) than most pilots typically log (<a href="http://work.chron.com/duty-limitations-faa-pilot-17646.html">under 1,000</a>). So these airline workers would have risk levels proportionately lower than Stuker’s. But what about you?</p> <p>If you want to know your personal cancer risk from flying, estimate all of your commercial airline miles over the years. Assuming that the values and parameters for speed, radiation dose and risk stated above for Stuker are also true for you, dividing your total miles by 3,700,000,000 will give your approximate odds of getting cancer from your flying time.</p> <p>For example, let’s pretend that you have a mathematically convenient 370,000 total flying miles. That would mean 370,000 miles divided by 3,700,000,000, which comes out to be 1/10,000 odds of contracting cancer (or a 0.01 percent increase in risk). Most people do not fly 370,000 miles (equal to 150 flights from Los Angeles to New York) within their lifetimes. So for the average flyer, the increased risk is far less than 0.01 percent.</p> <p>To make your exercise complete, make a list of all the benefits that you’ve derived from your air travel over your lifetime (job opportunities, vacation travel, family visits and so on) and go back and look at your increased cancer risk again. If you think your benefits have been meager compared to your elevated cancer risk, maybe its time to rethink flying. But for many people today, flying is a necessity of life, and the small elevated cancer risk is worth the price.<img style="border: none !important; box-shadow: none !important; margin: 0 !important; max-height: 1px !important; max-width: 1px !important; min-height: 1px !important; min-width: 1px !important; opacity: 0 !important; outline: none !important; padding: 0 !important;" src="https://counter.theconversation.com/content/78790/count.gif?distributor=republish-lightbox-basic" alt="The Conversation" width="1" height="1" /></p> <p><em><a href="https://theconversation.com/profiles/timothy-j-jorgensen-239253">Timothy J. Jorgensen</a>, Director of the Health Physics and Radiation Protection Graduate Program and Professor of Radiation Medicine, <a href="https://theconversation.com/institutions/georgetown-university-1239">Georgetown University</a></em></p> <p><em>Image credits: Shutterstock</em></p> <p><em>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a href="https://theconversation.com/air-travel-exposes-you-to-radiation-how-much-health-risk-comes-with-it-78790">original article</a>.</em></p>

Travel Trouble

Placeholder Content Image

To avoid the worst of climate change we have to change how we travel

<p>In September last year I embarked on a 5 week trip throughout Italy and France.</p> <p>We swam in the waters of Cinque Terre, ate the best pizza we’d ever had in Naples, and walked blisters into our feet through the streets of Paris.</p> <p>The marvels of modern aviation meant I completed my 32,000 km round trip in roughly 24 hours each way.</p> <p>But while I budgeted for the monetary costs associated with the trip, I neglected to consider another crucial one – the carbon cost.</p> <p>Humans are changing the Earth’s climate. It is estimated our activities have caused about 1°C of additional  atmospheric warming since the industrial revolution. The Intergovernmental Panel on Climate Change (IPCC) says <a href="https://www.ipcc.ch/sr15/chapter/spm/" target="_blank" rel="noreferrer noopener">crossing a 1.5°C threshold</a> will unleash devastating climate change impacts on human life and ecosystems.</p> <p>To keep global warming to below 1.5°C, as called for in the <a href="https://unfccc.int/process-and-meetings/the-paris-agreement" target="_blank" rel="noreferrer noopener">Paris Agreement</a>, emissions must peak before 2025 at the latest, halve by 2030, and reach net-zero as soon as possible before 2050. The <a href="https://www.unwto.org/the-glasgow-declaration-on-climate-action-in-tourism" target="_blank" rel="noreferrer noopener">Glasgow Declaration on Climate Action in Tourism</a>, launched at <a href="https://www.un.org/en/climatechange/cop26" target="_blank" rel="noreferrer noopener">COP26</a>, commits the tourism sector to these goals.</p> <p>So, what will global tourism look like as it begins to decarbonise? Will it necessitate changing the way I approach travel in the coming decades?</p> <p>Paul Peeters, a professor of sustainable transport and tourism at Breda University of Applied Sciences in the Netherlands is one of the principal authors of a report released last year that seeks to <a href="https://pure.buas.nl/ws/portalfiles/portal/27136592/Peeters_Papp_EnvisionTourism_report.pdf" target="_blank" rel="noreferrer noopener"><em>envision tourism in 2030 and beyond.</em></a></p> <h2 class="wp-block-heading">Tourism and emissions: how big of a contributor is it?</h2> <p>Tourism is a major contributor to climate change. According to Peeters, at least 5% of global CO<sub>2</sub> emissions come from tourism and travel, with some estimates as high as 8-11% if you include indirect (supply chain) emissions.</p> <p>These emissions are inequitable, about half of the global tourism footprint is caused by travel between the richest countries.</p> <p>If global tourism continues unchanged, it’s predicted to increase emissions by 73% by 2050, compared to 2019. In this scenario, the sector will use over 66% of the world’s remaining carbon budget between 2023 and 2100.</p> <p>Peeters says this is not a viable way forward. But it doesn’t mean that tourism will cease to exist, or that we must stop flying altogether.</p> <p>Instead, the modelling he presents finds there is a plausible decarbonisation pathway that allows tourism to continue with similar levels of growth in global revenue, trips, and guest nights compared to 2019, while also achieving net-zero emissions, by 2050.</p> <p>This model is called the Tourism Decarbonisation Scenario (TDS) and it requires us to re-think how we travel.</p> <h2 class="wp-block-heading">How do you put tourism emissions into a holding pattern?</h2> <p>“If you look at the division of the [emissions from] different parts of travel, then in general… transport takes about 75-80%, 20% goes to the accommodation sector,” says Peeters.</p> <p>That 20% also includes activities, like visiting museums or amusement parks.</p> <p>“And then within transport, you see that about more than half of the emissions come from aviation, while at the same time aviation serves about a quarter of all trips,” he says.</p> <p>Each country party to the Paris Agreement – a legally binding international treaty on climate change – is required to establish a <a href="https://www.un.org/en/climatechange/all-about-ndcs#:~:text=Simply%20put%2C%20an%20NDC%2C%20or,and%20adapt%20to%20climate%20impacts." target="_blank" rel="noreferrer noopener">Nationally Determined Contribution</a> (NDC). An NDC is an action plan to cut emissions and adapt to climate impacts, updated every 5 years.</p> <p>Most of tourism – like accommodation and on-ground transportation – falls within the Paris Agreement and these NDCs and will decarbonise through changes already happening in the legislation of each country. For instance, the transition to electrified forms of travel and accommodation powered by renewable energy. So, as a tourist, I won’t need to change my behaviour there.</p> <p>“But it’s not true for aviation. And the problem is that aviation, in terms of governance, has got an exemption,” says Peeters. Aviation emissions are much harder to reduce.</p> <p>The International Civil Aviation Organization  – ICAO – governs international aviation. It has a long-term aspirational goal for net-zero carbon emissions by 2050, and to achieve these goals is pursuing improvements to <a href="https://cosmosmagazine.com/science/engineering/hydrogen-fuelled-planes/">aircraft technology</a>, <a href="https://cosmosmagazine.com/technology/energy/from-refinery-to-biofuel-reactor/">sustainable aviation fuels</a>, and <a href="https://cosmosmagazine.com/earth/climate/carbon-offsetting-right/">carbon offsets</a>.</p> <p>But Peeters’ modelling says this won’t be enough.</p> <p>“The final technology is low or zero emission aircraft technology,” he says.</p> <p>“But that takes decades to develop and then decades to replace the whole fleet – you are not buying a new aircraft every year like a car.</p> <p>“That technology will come […] much faster actually than 10 years ago, but still it’s at a pace that we will have it by the end of the century fully implemented, not before.</p> <p>“We need an international body that governs the growth of aviation that actually stops it for the next couple of decades, to create a timeframe for the technology we need.”</p> <p>So until sustainable aviation technology can be fully implemented, the key is to slow the rate of growth of aviation.</p> <h2 class="wp-block-heading">Further does not equal better</h2> <p>In 2019, nearly all long-distance travel over 16,000 kms return trip was by air. These trips, equivalent to flying return Shanghai to Sydney or further, made up just 2% of all trips in 2019. But they were the most polluting – accounting for 19% of tourism’s total carbon emissions.</p> <p>My roundtrip from Australia to Europe sits in this bracket. I estimate my seats on those planes probably came with a carbon footprint of about 6.4 tonnes of CO<sub>2</sub> altogether. To put that in perspective, the average Australian emits 15 tonnes per year, according to <a href="https://ourworldindata.org/co2/country/australia" target="_blank" rel="noreferrer noopener">ourworldindata.org</a>, and I emitted almost half that in just 48 hours.</p> <p>Failing to curb the growth of these longest-haul trips means they will make up 4% of all trips but account for a massive 41% of tourism’s total emissions by 2050. To prevent this, the TDS says we need to cap them at 2019 levels – about 120 million return trips per year.</p> <p>In this scenario, shorter distance trips up to 900km return – that’s roughly equivalent to flying from Rome to Milan in Italy – and those by car, rail, coach, and ferry, would increase to 81% of all trips by 2050.</p> <p>Longer distance trips (return journeys of more than 7,000km, roughly equivalent to return flying Sydney to Perth and further) would also grow less quickly than current rates and account for 3.5% of all trips by 2050 (down from 6.0% in 2019).</p> <p>This could have flow-on benefits, especially for local tourism.</p> <p>“So, you keep the number of trips, and you keep the number of nights – you could even increase that a little bit as a compensation maybe for not being able to travel so far, then you can travel deeper. And that means the total revenues in the sector can grow as we are used to because the number of trips and the number of nights generate most of the revenues,” explains Peeters.</p> <h2 class="wp-block-heading">What curbing the aviation industry could look like</h2> <p>So, what will this mean for my travel habits in the coming years, if further isn’t better?</p> <p>It will likely involve a switch in mindset to consider whether an alternative, less carbon intensive mode of transport exists to reach the destination I have in mind.</p> <p>According to Peeters, even 1 fewer person sitting in an aircraft’s seats can measurably change its emissions.</p> <p>“Aircraft are quite lightweight, half of the weight of an aircraft taking off is not its structure. But it means that if you remove 100 kilograms, even off an Airbus A320, you can measure the difference in fuel consumption. It will save, I calculated it for flights, just a 1,500 km flight, already up to 10 kilograms of CO<sub>2</sub>,” says Peeters.</p> <p>Compare that to a different mode – adding an additional person to an already incredibly heavy train will add perhaps half a kilogram in emissions at most, probably less.</p> <p>It’s a little embarrassing to admit that I’ve never considered the idea of an interstate road trip, taking the car across the border or opting for a coach or train instead of flying, as a viable option for domestic travel in Australia.</p> <p>But it has for other people. <a href="https://flightfree.net.au/about/" target="_blank" rel="noreferrer noopener">Flight Free Australia</a> encourages us to stop flying, and people have already taken their pledge to swear off air travel – whether for the next 12 months or until it’s ‘climate safe’ to do so again.</p> <p>As for Europe… Well, Peeter’s report predicts that ticket prices will increase, with the cost of flying increasing to 0.18 $/pkm in 2050, from 0.06 $/pkm in 2019, caused mainly by mandates for sustainable aviation e-fuels.</p> <p>Entire families have event attempted to make it from one end of the world to another without setting foot on a plane – a months-long journey ultimately <a href="https://www.abc.net.au/news/2023-12-22/british-family-travel-australia-without-flying-carbon-footprint/103256280" target="_blank" rel="noreferrer noopener">foiled</a> by cyclones north of Darwin.</p> <p>Whether the changes outlined in the <em>Envisioning Tourism in 2030 and Beyond </em>report are made to the aviation industry, already my perspective on flying is changing. Why would I reduce my carbon footprint in other areas of my life, but turn around and negate those efforts by jumping on a plane?</p> <p>It doesn’t mean that I have to give up travel, just change my perspective on what makes a worthy destination.</p> <p>“You see a growing number of people, particularly young people, that say, ‘I stopped flying, whatever happens, I never go anymore’,” says Peeters.</p> <p>“And it makes your life so much easier. You don’t have to choose every time ‘should I fly?’. No, if you can’t get there by train, car, or whatever, you don’t go. And then you go somewhere else, of course, you’re not sitting at home. And you discover that somewhere else is also beautiful.”</p> <div> <p align="center"> </p> </div> <p><img id="cosmos-post-tracker" style="opacity: 0; height: 1px!important; width: 1px!important; border: 0!important; position: absolute!important; z-index: -1!important;" src="https://syndication.cosmosmagazine.com/?id=294884&amp;title=To+avoid+the+worst+of+climate+change+we+have+to+change+how+we+travel" width="1" height="1" loading="lazy" aria-label="Syndication Tracker" data-spai-target="src" data-spai-orig="" data-spai-exclude="nocdn" /></p> <div class="share-syndicate-wrapper margin-top-1"> <div class="article-sharing"> <p><em>Image credits: Getty Images</em></p> </div> </div> <div id="contributors"> <p><em><a href="https://cosmosmagazine.com/synergy/to-avoid-the-worst-of-climate-change-we-have-to-change-how-we-travel/">This article</a> was originally published on <a href="https://cosmosmagazine.com">Cosmos Magazine</a> and was written by <a href="https://cosmosmagazine.com/contributor/imma-perfetto/">Imma Perfetto</a>. </em></p> </div>

Travel Trouble

Placeholder Content Image

Obese woman sparks debate for not giving up extra seat for toddler

<p>An obese woman has sparked debate online after refusing to give up the second seat she paid for to a fussy toddler. </p> <p>The 34-year-old booked the two seats for her cross-country flight to visit her family for Christmas because she was previously unable to comfortably fit in one seat. </p> <p>All was well until the young woman next to her demanded that she "squeeze into one seat" so her son could sit on the other. </p> <p>"I am obese," she admitted on the Reddit thread. "I'm actively working toward losing weight and I've made progress - but I booked an extra seat because I'm fat."</p> <p>She added that she insisted on keeping her seat because she paid for it, but the mum "made a big fuss over it, and she told the flight attendant I was stealing the seat from her son." </p> <p>"Then I showed her my boarding passes, proving that I paid for the extra seat. The flight attendant asked me if I could try to squeeze in, but I said no, that I wanted the extra seat I paid for."</p> <p>The woman claimed that the toddler was only 18 months old, so he didn't need his own seat and could've sat on his mum's lap for the duration of the flight. </p> <p>"I got dirty looks and passive-aggressive remarks from her for the entire flight and I do feel a little bad because the boy looked hard to control - but am I in the wrong?" she asked other social media users. </p> <p>Many shared their overwhelming support for the woman and slammed the mum and flight attendant for their "horrific" behaviour. </p> <p>"The mum is an a**hole for not buying a seat for her son and assuming someone else would give up a seat they paid for. Odds are she was hoping there'd be extra seats on the flight so she didn't have to pay and used the lap thing as a loophole," one commented. </p> <p>"What's even the point of the extra seat if the flight attendants are going to let entitled people bully others into giving it up?" another added. </p> <p>"People buy entire seats for high-end musical equipment. Not even people. Their lack of planning does not constitute an emergency on your part," a third wrote. </p> <p>However, there were a few others that said the woman was in the wrong for causing an inconvenience. </p> <p>"If you are so fat that you have to have more than one seat on an airplane then you are selfish," one said. </p> <p>"Flights overbook all the time especially during the holidays - how can you justify having two seats to yourself?" </p> <p>"How much room does a kid take up, seriously? Yeah the mum should've bought a seat but that doesn't mean you have to be selfish and cause two people discomfort," another commented. </p> <p><em>Image: Getty</em></p>

Travel Trouble

Placeholder Content Image

Flying home for Christmas? Carbon offsets are important, but they won’t fix plane pollution

<p><em><a href="https://theconversation.com/profiles/susanne-becken-90437">Susanne Becken</a>, <a href="https://theconversation.com/institutions/griffith-university-828">Griffith University</a> and <a href="https://theconversation.com/profiles/brendan-mackey-152282">Brendan Mackey</a>, <a href="https://theconversation.com/institutions/griffith-university-828">Griffith University</a></em></p> <p>Australia is an important player in the global tourism business. In 2016, <a href="https://www.tra.gov.au/research/research">8.7 million visitors arrived in Australia and 8.8 million Australians went overseas</a>. A further 33.5 million overnight trips were made domestically.</p> <p>But all this travel comes at a cost. According to the <a href="http://tourismdashboard.org/explore-the-data/carbon-emissions/">Global Sustainable Tourism Dashboard</a>, all Australian domestic trips and one-way international journeys (the other half is attributed to the end point of travel) amount to 15 million tonnes of carbon dioxide for 2016. That is 2.7% of global aviation emissions, despite a population of only 0.3% of the global total.</p> <p>The peak month of air travel in and out of Australia is December. Christmas is the time where people travel to see friends and family, or to go on holiday. More and more people are <a href="http://climatecommunication.yale.edu/publications/analysis-of-a-119-country-survey-predicts-global-climate-change-awareness/">aware of the carbon implications of their travel</a> and want to know whether, for example, they should purchase carbon offsets or not.</p> <p>Our <a href="http://www.sciencedirect.com/science/article/pii/S0969699716302538">recent study in the Journal of Air Transport Management</a> showed that about one third of airlines globally offer some form of carbon offsetting to their customers. However, the research also concluded that the information provided to customers is often insufficient, dated and possibly misleading. Whilst local airlines <a href="https://www.qantasfutureplanet.com.au/#aboutus">Qantas</a>, <a href="https://www.virginaustralia.com/nz/en/about-us/sustainability/carbon-offset-program/">Virgin Australia</a> and <a href="https://www.airnewzealand.co.nz/sustainability-customer-carbon-offset">Air New Zealand</a> have relatively advanced and well-articulated carbon offset programs, others fail to offer scientifically robust explanations and accredited mechanisms that ensure that the money spent on an offset generates some real climate benefits.</p> <p>The notion of carbon compensation is actually more difficult than people might think. To help explain why carbon offsetting does make an important climate contribution, but at the same time still adds to atmospheric carbon, we created an <a href="https://www.youtube.com/watch?v=xsh-erzGlR0">animated video clip</a>.</p> <figure><iframe src="https://www.youtube.com/embed/xsh-erzGlR0?wmode=transparent&amp;start=0" width="440" height="260" frameborder="0" allowfullscreen="allowfullscreen"></iframe><figcaption><span class="caption">Jack’s journey.</span></figcaption></figure> <p>The video features Jack, a concerned business traveller who begins purchasing carbon credits. However, he comes to the realisation that the carbon emissions from his flights are still released into the atmosphere, despite the credit.</p> <p>The concept of “carbon neutral” promoted by airline offsets means that an equal amount of emissions is avoided elsewhere, but it does not mean there is no carbon being emitted at all – just relatively less compared with the scenario of not offsetting (where someone else continues to emit, in addition to the flight).</p> <p>This means that, contrary to many promotional and educational materials (see <a href="https://www.youtube.com/watch?v=cGB2OAg5ffA">here</a> for instance), carbon offsetting will not reduce overall carbon emissions. Trading emissions means that we are merely maintaining status quo.</p> <p>A steep reduction, however, is what’s required by every sector if we were to reach the net-zero emissions goal by 2050, agreed on in the <a href="http://unfccc.int/paris_agreement/items/9485.php">Paris Agreement</a>.</p> <p>Carbon offsetting is already an important “<a href="http://www.sciencedirect.com/science/article/pii/S0261517714000910">polluter pays</a>” mechanism for travellers who wish to contribute to climate mitigation. But it is also about to be institutionalised at large scale through the new UN-run <a href="https://www.icao.int/environmental-protection/Pages/market-based-measures.aspx">Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA)</a>.</p> <p>CORSIA will come into force in 2021, when participating airlines will have to purchase carbon credits for emissions above 2020 levels on certain routes.</p> <p>The availability of carbon credits and their integrity is of major concern, as well as how they align with national obligations and mechanisms agreed in the Paris Agreement. Of particular interest is <a href="http://www.carbon-mechanisms.de/en/introduction/the-paris-agreement-and-article-6/">Article 6</a>, which allows countries to cooperate in meeting their climate commitments, including by “trading” emissions reductions to count towards a national target.</p> <p>The recent COP23 in Bonn highlighted that CORSIA is widely seen as a potential source of billions of dollars for offset schemes, supporting important climate action. Air travel may provide an important intermediate source of funds, but ultimately the aviation sector, just like anyone else, will have to reduce their own emissions. This will mean major advances in technology – and most likely a contraction in the fast expanding global aviation market.</p> <h2>Travelling right this Christmas</h2> <p>In the meantime, and if you have booked your flights for Christmas travel, you can do the following:</p> <ul> <li> <p>pack light (every kilogram will cost additional fuel)</p> </li> <li> <p>minimise carbon emissions whilst on holiday (for instance by biking or walking once you’re there), and</p> </li> <li> <p>support a <a href="http://www.co2offsetresearch.org/consumer/Standards.html">credible offsetting program</a>.</p> </li> </ul> <p>And it’s worth thinking about what else you can do during the year to minimise emissions – this is your own “carbon budget”.<!-- Below is The Conversation's page counter tag. Please DO NOT REMOVE. --><img style="border: none !important; box-shadow: none !important; margin: 0 !important; max-height: 1px !important; max-width: 1px !important; min-height: 1px !important; min-width: 1px !important; opacity: 0 !important; outline: none !important; padding: 0 !important;" src="https://counter.theconversation.com/content/89148/count.gif?distributor=republish-lightbox-basic" alt="The Conversation" width="1" height="1" /><!-- End of code. If you don't see any code above, please get new code from the Advanced tab after you click the republish button. The page counter does not collect any personal data. More info: https://theconversation.com/republishing-guidelines --></p> <p><em><a href="https://theconversation.com/profiles/susanne-becken-90437">Susanne Becken</a>, Professor of Sustainable Tourism and Director, Griffith Institute for Tourism, <a href="https://theconversation.com/institutions/griffith-university-828">Griffith University</a> and <a href="https://theconversation.com/profiles/brendan-mackey-152282">Brendan Mackey</a>, Director of the Griffith Climate Change Response Program, <a href="https://theconversation.com/institutions/griffith-university-828">Griffith University</a></em></p> <p><em>Image credits: Getty Images</em></p> <p><em>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a href="https://theconversation.com/flying-home-for-christmas-carbon-offsets-are-important-but-they-wont-fix-plane-pollution-89148">original article</a>.</em></p>

Travel Trouble

Placeholder Content Image

This bathroom item is dirtier than your toilet seat, according to a microbiologist

<p><strong>Bathrooms and germs </strong></p> <p>Bathrooms are filthy – there’s just no way around it. They’re home to toilets, sinks and showers and tend to be one of the dirtiest places in the home, no matter how often they’re on your cleaning schedule. And because the toilet seat plays host to your derrière, it’s easy to label this as the germiest spot in the bathroom. But research is disproving that notion.</p> <p>Overall, the hard surfaces – such as the toilet seat and floor – are scrubbed down often because they’re the first lines on your bathroom cleaning checklist. And many people focus on cleaning the toilet because nothing screams dirty like a line of biofilm in the toilet bowl. But what about other bathroom-specific items? Dr Charles Gerba, a microbiology professor at the University of Arizona, says that it’s the fabrics in our bathroom that deserve the most attention. Yes, your bathmat is actually dirtier than your toilet seat, followed by towels, including those facecloths (which is why you need to wash your towels often). Here’s what you need to know.</p> <p><strong>Are bathmats really that dirty?</strong></p> <p>“We’ve done a lot of research on the microbiology of homes and, more recently, the bathroom,” says Gerba. The bathmat is problematic for two reasons, he says. First, it gets wet when you’re getting out of the shower, and it stays wet and moist, often in a dark and damp room.</p> <p>The second issue is that many people wear shoes in the bathroom, a huge contributing factor to the dirt, grime and bacteria found on bathmats. “Almost 90% of all shoes have faecal bacteria on them,” Gerba says. “You’re walking in dog poop all the time, and you don’t know it.”</p> <p>Beyond tracking shoes throughout the house and across bathmats, Gerba also pointed out the potential of spray from the toilet to land on bathmats. The Ecological Fluid Dynamics Lab at the University of Colorado Boulder experimented to see how far water droplets were ejected into the air when flushing public restroom toilets. The airborne particles shoot out quickly, reaching as much as 1.5 metres above the toilet within 8 seconds. The droplets were unpredictable and landed on the walls around the toilet, including behind it, and also on the ceiling. Which means that depending on the proximity, spray from a toilet can easily touch down on a plush bathmat.</p> <p>But while some research might suggest closing the toilet seat cover at home before flushing, not everyone agrees with that solution. “When you close the lid, the spray then goes over the top of the toilet seat and hits the walls on the side because you’ve narrowed the opening, which makes the water shoot out at a higher speed,” Gerba says, adding that closing the lid also leads to the toilet seat and underside of the lid getting more contaminated.</p> <p><strong>How to prevent dirty bathmats</strong></p> <p>Whether or not you close the toilet seat, one thing is certain: Keeping your bathmat as dry as possible is important. One of the factors that make bathmats the dirtiest spot in the bathroom is that they sometimes stay damp for hours, depending on how humid your environment is, how many people are showering and how much water splashes on them. Drying off in the shower will keep your bathmat from getting soggy. You can also hang it to dry instead of leaving it on the floor, where it will stay wet longer.</p> <p>Another tip: If you don’t remove your shoes when entering your house, at least take them off before going into the bathroom (and clean your floors often). That way, you’re not tracking outside germs onto a bathmat where they can quickly and easily multiply. “When you get out of the shower, it’s moist,” Gerba says. “Any time we have a fabric, it absorbs water, and things like faecal bacteria will survive longer there than on hard surfaces.”</p> <p><strong>How to wash your bathmat</strong></p> <p>The hard surfaces in bathrooms are satisfying to spray and wipe down, which Gerba recommends doing every few days. But what about bathmats? You should wash your bathmat at least once a week, and not just to keep it fresh and fluffy, but importantly, to remove bacteria.</p> <p>The first step to washing bathmats is to check the care label and follow the instructions on the tag, including which temperature is best for the fabric. Most bathmats can be machine-washed, but be careful with rubber-backed bathmats, which shouldn’t be dried on high heat. In general, quick-drying fabrics, such as microfibre and chenille, can be good options because they dry fast and are easy to launder. Something you can easily wash twice per week is the healthiest option.</p> <p><em>Image credits: Getty Images</em></p> <p><em>This article originally appeared on <a href="https://www.readersdigest.com.au/food-home-garden/home-tips/this-bathroom-item-is-dirtier-than-your-toilet-seat-according-to-a-microbiologist" target="_blank" rel="noopener">Reader's Digest</a>. </em></p>

Home & Garden

Placeholder Content Image

Heated argument between economy passengers reignites plane etiquette debate

<p>A 12-second clip of two passengers arguing on a plane has reignited the age-old debate of whether it is acceptable to recline your seat on a plane. </p> <p>The viral video which was originally posted on TikTok and then re-shared on X, has racked up over 8 million views since Thursday. </p> <p>In the video, a frustrated woman was calling out another female passenger for pushing her seat the entire flight, right after they landed. </p> <p>“The whole trip she pushed my seat,” the woman said to a male passenger seated next to the female passenger accused of kicking her seat. </p> <p>“You seen it. You know she did.”</p> <p>“I’m allowed to put my seat back," she yelled repeatedly. </p> <p>Ian Miles Cheong, the user who posted the video on X, defended the woman saying: “She’s allowed to put her seat back. You don’t get to kick it repeatedly just because you want more space.”</p> <p>A few were on the woman's side and praised her for standing up for herself. </p> <p>“You are allowed! Period! You want space in front of you instead of pushing the seat, buy a seat with extra space or get your a** to business class. Reclining was put there for a reason,” one person wrote. </p> <p>“She was patient enough to wait till flight landed," they added. </p> <p>“If the seat is reclinable, recline it,” another commented. </p> <p>"What she’s saying is right. The woman has a right to put her seat back without someone kicking it," a third agreed.</p> <blockquote class="twitter-tweet"> <p dir="ltr" lang="en">She’s allowed to put her seat back. You don’t get to kick it repeatedly just because you want more space. <a href="https://t.co/WELD7Qh4Re">pic.twitter.com/WELD7Qh4Re</a></p> <p>— Ian Miles Cheong (@stillgray) <a href="https://twitter.com/stillgray/status/1719881310351863952?ref_src=twsrc%5Etfw">November 2, 2023</a></p></blockquote> <p>However, others claimed that there was an unwritten rule that you shouldn't recline your seat, especially on a short-haul flight, adding that the recline feature should be scrapped from airplanes. </p> <p>“Putting your seat back in coach is an unspoken thing most people don’t do. It’s really the airline’s fault because they’ve made coach so cramped and tight that putting the seat back shouldn’t even be an option,” one commented. </p> <p>“Airline seats simply shouldn’t be able to recline. It intrudes on the already very little space a person has on the plane for the person behind them,” another added. </p> <p>“Really it’s the airline’s fault for cramming so many people in such a small space. They don’t call it cattle class for nothing,” a third wrote. </p> <p>One user understood both sides of the argument, and blamed the airlines for making the seats so cramped. </p> <p>"It can be annoying sometimes to be behind someone with their seat all the way, but if the airlines didn't want to allow that, it wouldn't happen," they wrote.</p> <p>"You don't kick the seat like a baby. Blame the airline, not the person doing what the airline says is fine." </p> <p><em>Images: Twitter</em></p>

Travel Trouble

Placeholder Content Image

Traveller shares hilarious hack to ensure the middle seat on a plane stays empty

<p>There is nothing more joyous than boarding a plane and being seated next to an empty seat, ensuring you have a comfy flight by not being squished in with other travellers. </p> <p>But with this joy can also come sheer disappointment, when you get comfy in your extra space before a last-minute traveller comes to claim the empty seat.</p> <p>To combat the chance of someone robbing you of your space on a cramped plane, one traveller has shared the hilarious lengths he goes to in order to make sure the middle seat on a plane stays empty. </p> <p>The traveller posted the video of his hilarious hack to TikTok, sharing his trick with others to guarantee some extra space every time you fly.</p> <p>He put his arm upright inside a spare hoodie, placing a hat on top of his hand, to make it look like the seat was already occupied – preventing anyone else from taking that spot.</p> <p>The video has since been taken down, but has been reshared by other accounts.</p> <p>Of course, this hack only works on flights that have open seating policies, where passengers choose their own seats once on board, rather than having them assigned.</p> <p>The trick seems to work, with passengers avoiding his row and taking up empty seats elsewhere. </p> <p>Some viewers called the hack "genius" and said they would try it out for themselves next time they travel. </p> <p>However, others were skeptical, wondering how the trick would work if passengers eager to be seated are walking towards the two front on, rather than from behind. </p> <p><em>Image credits: TikTok</em></p>

Travel Tips

Placeholder Content Image

The real reason we cry on aeroplanes

<p>We’ve all been there: you’re buckled into your aeroplane seat, pull out your comfy travel pillow and turn on the movie screen. While the intro credits start rolling, you… burst into tears? Even the most stoic passenger can break out the waterworks for seemingly no reason.</p> <p>So what is it about flying at 30,000 feet that makes us so emotional? There are many theories, but to get to the bottom of it, travel expert Samantha Brown recently spoke to CNN. Here’s what she had to say.</p> <p><strong>Why do we cry on aeroplanes?</strong></p> <p>In her video, Brown explains one popular theory as to why we cry on aeroplanes. She claims that our “eyes are trying to create moisture” to combat the dry atmosphere of the plane. </p> <p>She continues, “The only way your eyes know how to create moisture is to cry. And so it becomes this physical response that the brain sends to release the tear ducts.”</p> <p><strong>Why do we get emotional on aeroplanes?</strong></p> <p>There is, however, an interesting caveat to this theory. Brown explains, “You have to be emotional to cry [so] your body acclimates to the dryness and creates the tears,” so you have to create the emotion first to create the tears.” In other words, your brain may create an unusually heightened emotional response to something that otherwise may not have moved you. </p> <p>For Brown, this was humorously a flashback scene from a German shepherd in the movie Beverly Hills Chihuahua. While a movie can help your brain get into the crying mood, some passengers also experience this crying while reading, writing, reflecting or simply staring out the window. (This writer once cried at a particularly awe-inspiring cloud!)</p> <p><strong>How do we avoid crying on an aeroplane</strong></p> <p>There is no reason to be embarrassed about crying on aeroplane; it is, after all, a natural human response. But if you are searching for solutions, Brown jokes, “I would recommend [watching] all the Taken movies with Liam Neeson.” She says she chooses to steer clear of especially emotional movies, citing Terms of Endearment, and instead opts for “a rom-com starring Adam Sandler and Drew Barrymore (not as a chihuahua). “But I’ll probably still cry,” she adds.</p> <p>In addition to selecting appropriate in-flight entertainment, keep emotions at bay by minimising the stress of your trip. Bon voyage!</p> <p><em>Image credits: Getty Images</em></p> <p><em>This article originally appeared on <a href="https://www.readersdigest.com.au/travel/the-real-reason-we-cry-on-aeroplanes" target="_blank" rel="noopener">Reader's Digest</a>. </em></p>

Travel Tips

Placeholder Content Image

The reason some planes skip row numbers

<p dir="ltr">When it comes to boarding a flight, a lot of people have specific preferences on where they want to sit, while others simply leave it up to chance. </p> <p dir="ltr">The next time you’re looking for your seat on your next flight, pay close attention to the row numbers and see if you notice anything strange. </p> <p dir="ltr">According to <em><a href="https://www.euronews.com/travel/2023/03/21/which-airlines-skip-row-13-and-where-does-the-superstition-come-from">EuroNews</a></em>, a lot of aircrafts have been known to skip over rows, specifically rows 13, 14 and 17. </p> <p dir="ltr">The skipping of these numbers stems largely from superstitious passengers, with the number 13 being widely considered as “unlucky”. </p> <p dir="ltr">The superstition around the number originates largely from Christia scripture, as the disciple who betrayed Jesus Christ, Judas Iscariot, was the 13th guest at the last supper.</p> <p dir="ltr">The number 14 is considered unlucky in Chinese culture, as it phonetically sounds like the words “will die”. </p> <p dir="ltr">As for the number 17, Italian culture often steers clear of the number due to its Roman meaning. </p> <p dir="ltr">"This fear stems from the fact that the number 17's Roman numeral, XVII, is an anagram of VIXI, which means 'I have lived' in Latin. Some consider this a bad omen as it implies that death is just around the corner," explains <a href="https://www.abodeitaly.com/blog/why-italians-unlucky-day-is-friday-the-17th">Abode Italy.</a></p> <p dir="ltr">According to <em>EuroNews</em>, there are a few airlines that avoid the unlucky rows altogether.</p> <p dir="ltr">Ryanair, Air France, Singapore Airlines, Cathay Pacific, Qatar Airlines, Lufthansa, and Emirates have been known to skip over the three unlucky numbers. </p> <p dir="ltr">So the next time you’re boarding a flight, check to see if your chosen airline has indulged the superstitions or if any brave passengers have chosen to risk flying in the “dangerous” rows. </p> <p dir="ltr"><em>Image credits: Getty Images</em></p>

Travel Tips

Placeholder Content Image

Savvy traveller shares how to guarantee an entire row on your next flight

<p dir="ltr">When it comes to flying, it's no secret that space is a hard commodity to come by. </p> <p dir="ltr">Travelling in economy often means being crammed in beside other passengers battling for real estate on your shared arm rests, and struggling to stretch out your legs in limited space for your feet and bags. </p> <p dir="ltr">However, a savvy traveller has shared a foolproof hack to get the most space you can on your next flight with Qantas. </p> <p dir="ltr">Frequent flyer Chelsea Badger has revealed how she recently managed to switch seats to a row of empty seats mere moments before her Auckland to Sydney flight, without having to pay an extra cent.</p> <p dir="ltr">“I can't believe this works,” Chelsea, who lives in Auckland, said in her now-viral TikTok. </p> <p dir="ltr">Chelsea said in order to make the hack work, you will need the Qantas app, and wait until 10 minutes before your flight to check in. </p> <p dir="ltr">“Once you've done this, open up the Qantas app and click the seat selector tool,” she said.</p> <p dir="ltr">“If there's a whole row free or even just a better seat, make a mental note of that number.”</p> <p dir="ltr">Chelsea added, “You won't be able to select that seat in the app as it's too close to boarding, so simply just go up to the desk and politely ask to have it changed.”</p> <p dir="ltr">“It's so easy and I can't believe this works!”</p> <p dir="ltr">She clarified that it has worked for her on several non-full Qantas flights, but she is not saying it will work for every airline. </p> <p dir="ltr">More than 300,000 people who viewed the video thanked Chelsea for sharing her secret trick, with many saying they would try it out for themselves.</p> <p dir="ltr">“Legit did this,” one commenter posted.</p> <p dir="ltr">“This is smart AF,” another added.</p> <p dir="ltr">A third shared her own take on the trick, “I've made mental notes of empty rows while literally boarding the plane and then just sitting in those seats upon boarding - works every time.”</p> <p dir="ltr"><em>Image credits: Getty Images</em></p>

Travel Tips

Placeholder Content Image

What is air turbulence?

<p>You probably know the feeling: you’re sitting on a plane, happily cruising through the sky, when suddenly the seat-belt light comes on and things get a little bumpy.</p> <p>Most of the time, turbulence leads to nothing worse than momentary jitters or perhaps a spilled cup of coffee. In rare cases, passengers or flight attendants might end up with some injuries.</p> <p>What’s going on here? Why are flights usually so stable, but sometimes get so unsteady?</p> <p>As a meteorologist and atmospheric scientist who studies air turbulence, let me explain.</p> <h2>What is air turbulence?</h2> <p>Air turbulence is when the air starts to flow in a chaotic or random way. </p> <p>At high altitudes the wind usually moves in a smooth, horizontal current called “laminar flow”. This provides ideal conditions for steady flight.</p> <p>Turbulence occurs when something disrupts this smooth flow, and the air starts to move up and down as well as horizontally. When this happens, conditions can change from moment to moment and place to place.</p> <p>You can think of normal flying conditions as the glassy surface of the ocean on a still day. But when a wind comes up, things get choppy, or waves form and break – that’s turbulence.</p> <h2>What causes air turbulence?</h2> <p>The kind of turbulence that affects commercial passenger flights has three main causes.</p> <p>The first is thunderstorms. Inside a thunderstorm, there is strong up-and-down air movement, which makes a lot of turbulence that can spread out to the surrounding region. Thunderstorms can also create “atmospheric waves”, which travel through the surrounding air and eventually break, causing turbulence. </p> <p>Fortunately, pilots can usually see thunderstorms ahead (either with the naked eye or on radar) and will make efforts to go around them.</p> <p>The other common causes of turbulence create what’s typically called “clear-air turbulence”. It comes out of air that looks perfectly clear, with no clouds, so it’s harder to dodge.</p> <p>The second cause of turbulence is jet streams. These are high-speed winds in the upper atmosphere, at the kind of altitudes where passenger jets fly. </p> <p>While air inside the jet stream moves quite smoothly, there is often turbulence near the top and bottom of the stream. That’s because there is a big difference in air speed (called “wind shear”) between the jet stream and the air outside it. High levels of wind shear create turbulence.</p> <p>The third thing that makes turbulence is mountains. As air flows over a mountain range, it creates another kind of wave – called, of course, a “mountain wave” – that disrupts air flow and can create turbulence.</p> <h2>Can air turbulence be avoided?</h2> <p>Pilots do their best to avoid air turbulence – and they’re pretty good at it!</p> <p>As mentioned, thunderstorms are the easiest to fly around. For clear-air turbulence, things are a little trickier.</p> <p>When pilots encounter turbulence, they will change altitude to try to avoid it. They also report the turbulence to air traffic controllers, who pass the information on to other flights in the area so they can try to avoid it. </p> <p>Weather forecasting centres also provide turbulence forecasts. Based on their models of what’s happening in the atmosphere, they can predict where and when clear-air turbulence is likely to occur.</p> <h2>Will climate change make turbulence worse?</h2> <p>As the globe warms and the climate changes in coming decades, we think air turbulence will also be affected.</p> <p>One reason is that the jet streams which can cause turbulence are shifting and may become more intense. As Earth’s tropical climate zones spread away from the equator, the jet streams are moving with them.</p> <p>This is likely to increase turbulence on at least some flight routes. Some studies also <a href="https://www.nature.com/articles/s41586-019-1465-z">suggest</a> the wind shear around jet streams has become more intense.</p> <p>Another reason is that the most severe thunderstorms are also likely to become more intense, partly because a warmer atmosphere can hold more water vapour. This too is likely to generate more intense turbulence.</p> <p>These predictions are largely based on climate models, because it is difficult to collect the data needed to identify trends in air turbulence. These data largely come from reports by aircraft, the quality and extent of which are changing over time. These measurements are quite different from the long-term, methodically gathered data usually used to detect trends in the weather and climate.</p> <h2>How dangerous is air turbulence?</h2> <p>Around the globe, air turbulence causes hundreds of injuries each year among passengers and flight attendants on commercial aircraft. But, given the hundreds of millions of people who fly each year, those are pretty good odds.</p> <p>Turbulence is usually short-lived. What’s more, modern aircraft are engineered to comfortably withstand all but the most extreme air turbulence. </p> <p>And among people who are injured, the great majority are those who aren’t strapped in. So if you’re concerned, the easiest way to protect yourself is to wear your seat belt.</p> <p><em>Image credits: Getty Images</em></p> <p><em>This article originally appeared on <a href="https://theconversation.com/what-is-air-turbulence-196872" target="_blank" rel="noopener">The Conversation</a>.</em></p>

Travel Tips

Placeholder Content Image

Which seat on a plane is the safest? We asked an aviation expert

<p>When booking a flight, do you ever think about which seat will protect you the most in an emergency? Probably not. </p> <p>Most people book seats for comfort, such as leg room, or convenience, such as easy access to toilets. Frequent flyers (this author included) might book their seat as close as possible to the front so they can disembark more quickly.</p> <p>We rarely book a flight with hopes of getting one of the middle seats in the last row. Well, guess what? These seats are statistically <a href="https://time.com/3934663/safest-seat-airplane/">the safest ones on an airplane</a>.</p> <h2>Air travel is safe</h2> <p>Before we get into it, I should reiterate that air travel is the <a href="https://www.sbs.com.au/news/article/how-safe-is-flying-heres-what-the-statistics-say/knzczab06">safest mode of transport</a>. In 2019, there were just under <a href="https://www.flightradar24.com/blog/flightradar24s-2019-by-the-numbers/">70 million</a>flights globally, with only <a href="https://www.forbes.com/sites/michaelgoldstein/2020/01/02/aviation-safety-in-2019-fewer-deaths-but-more-fatal-accidents/?sh=58d372f74ceb">287 fatalities</a>.</p> <p>According to the US National Safety Council’s analysis of census data, the odds of <a href="https://time.com/3934663/safest-seat-airplane/">dying in a plane</a> are about 1 in 205,552, compared with 1 in 102 in a car. Even so, we pay little attention to fatal road accidents, but when we hear about an <a href="https://www.theguardian.com/world/2023/jan/15/nepal-plane-crash-with-72-onboard-leaves-at-least-16-dead">ATR72 crashing in Nepal</a> it’s the lead story on every news page.</p> <p>Our interest in plane crashes might lie in wanting to understand why they happen, or what the odds are of them happening again. And perhaps it’s not a bad thing; our concern ensures these tragic incidents are <a href="https://apnews.com/article/plane-crashes-nepal-singapore-kathmandu-accidents-3b26342109872610d922f515fe94455b">thoroughly investigated</a>, which helps keep air travel safe.</p> <p>Frankly speaking, there is no real need to worry about safety when you board a commercial flight. But if you’ve still got that nagging question in your head, driven by sheer curiosity, read on.</p> <h2>In the middle, at the back</h2> <p>It’s worth remembering accidents by their very nature do not conform to standards. In the 1989 <a href="https://www.britannica.com/event/United-Airlines-Flight-232">United Flight 232</a> crash in Sioux City, Iowa, 184 of the 269 people onboard survived the accident. Most of the survivors were sitting behind first class, towards the front of the plane.</p> <p>Nonetheless, a <a href="https://time.com/3934663/safest-seat-airplane/">TIME investigation</a> that looked at 35 years of aircraft accident data found the middle rear seats of an aircraft had the lowest fatality rate: 28%, compared with 44% for the middle aisle seats.</p> <p>This logically makes sense too. Sitting next to an exit row will always provide you with the fastest exit in the case of an emergency, granted there’s no fire on that side. But the wings of a plane store fuel, so this disqualifies the middle exit rows <a href="https://www.rd.com/list/flight-safety/">as the safest row option</a>.</p> <p>At the same time, being closer to the front means you’ll be impacted before those in the back, which leaves us with the last exit row. As for why the middle seats are safer than the window or aisle seats, that is, as you might expect, because of the buffer provided by having people on either side.</p> <h2>Some emergencies are worse than others</h2> <p>The type of emergency will also dictate survivability. Running into a mountain will decrease chances of survival exponentially, as was the case in a tragic 1979 disaster in New Zealand. Air New Zealand Flight TE901 crashed into the slopes of Mt Erebus <a href="https://nzhistory.govt.nz/culture/erebus-disaster">in Antarctica</a>, killing 257 passengers and crew.</p> <p>Landing in the ocean nose-first also decreases chances of survival, as witnessed with the 2009 <a href="https://www.theguardian.com/world/2022/oct/10/air-france-flight-af477-2009-crash-trial-airbus">Air France Flight 447</a>, in which 228 passengers and crew perished. </p> <p>Pilots are trained to minimise potential risk in an emergency event as best as they can. They will try to avoid hitting mountains and look for a level place, such as an open field, to land as normally as possible. The technique for <a href="https://www.aviationsafetymagazine.com/features/the-myths-of-ditching/">landing in water</a> requires assessing the surface conditions and attempting to land between waves at a normal landing angle.</p> <p>Aircraft are designed to be very robust in emergency situations. In fact, the main reason the cabin crew remind us to keep our seat belts fastened is not because of crash risk, but because of “<a href="https://www.skybrary.aero/articles/clear-air-turbulence-cat">clear air turbulence</a>” that can be experienced at any time at high altitudes. It is this weather phenomenon that can cause the most damage to <a href="https://www.usnews.com/news/us/articles/2022-12-20/turbulence-persists-as-a-major-cause-of-injuries-on-flights">passengers and aircraft</a>. </p> <p>Manufacturers are designing new planes with more composite materials capable of handing in-flight stress. In these designs, the wings are not rigid and can flex to absorb <a href="https://www.wired.com/2010/03/boeing-787-passes-incredible-wing-flex-test/">extreme loading</a> to prevent structural failure. </p> <h2>Does the type of plane make a difference?</h2> <p>Granted, there are certain variables, such as impact from airspeed, that can vary slightly between different airplane types. However, the <a href="https://www.grc.nasa.gov/www/k-12/UEET/StudentSite/dynamicsofflight.html">physics of flight</a> is more or less the same in all planes.</p> <p>Generally, larger planes will have more structural material and therefore more strength to withstand pressurisation at altitude. This means they may provide some additional protection in an emergency – but this, again, is highly dependent on the severity of the emergency.</p> <p>That’s not to say you should book your next flight on the largest plane you can find. As I’ve mentioned, air travel remains very safe. So I’d suggest thinking about what movie you’ll watch instead, and hoping they don’t run out of chicken and only have the <a href="https://www.cnbc.com/2018/11/19/6-airplane-foods-you-should-avoid-according-to-food-safety-experts.html">shrimp</a> left!</p> <p><em>Image credits: Getty Images</em></p> <p><em>This article originally appeared on <a href="https://theconversation.com/which-seat-on-a-plane-is-the-safest-we-asked-an-aviation-expert-198672" target="_blank" rel="noopener">The Conversation</a>. </em></p>

Travel Tips